Exl3: Add vision capability

This commit is contained in:
turboderp 2025-06-15 19:22:51 +02:00
parent 4605c0f6bd
commit 1c9891bf04
4 changed files with 80 additions and 7 deletions

View file

@ -14,7 +14,7 @@ if dependencies.exllamav2:
# Fetch the return type on runtime
@alru_cache(20)
async def get_image_embedding(url: str) -> "ExLlamaV2MMEmbedding":
async def get_image_embedding_exl2(url: str) -> "ExLlamaV2MMEmbedding":
image = await get_image(url)
return model.container.vision_model.get_image_embeddings(
model=model.container.model,
@ -25,4 +25,4 @@ async def get_image_embedding(url: str) -> "ExLlamaV2MMEmbedding":
def clear_image_embedding_cache():
get_image_embedding.cache_clear()
get_image_embedding_exl2.cache_clear()

View file

@ -69,6 +69,7 @@ class ExllamaV3Container(BaseModelContainer):
config: Optional[Config] = None
draft_config: Optional[Config] = None
generator: Optional[AsyncGenerator] = None
vision_model: Optional[Model] = None
# Class-specific vars
gpu_split: Optional[List[float]] = None
@ -112,6 +113,19 @@ class ExllamaV3Container(BaseModelContainer):
self.model = Model.from_config(self.config)
self.tokenizer = Tokenizer.from_config(self.config)
# Prepare vision model if requested in config
self.use_vision = kwargs.get("vision")
if self.use_vision and "vision" in self.config.model_classes:
self.vision_model = Model.from_config(self.config, component="vision")
else:
logger.warning(
"The provided model does not have vision capabilities that are "
"supported by ExllamaV3. "
"Vision input is disabled."
)
self.vision_model = None
self.use_vision = False
# Fallback to 4096 since exl3 can't fetch from HF's config.json
self.max_seq_len = unwrap(kwargs.get("max_seq_len"), 4096)
@ -418,6 +432,14 @@ class ExllamaV3Container(BaseModelContainer):
@torch.inference_mode()
def load_model_sync(self, progress_callback=None):
if self.use_vision:
for value in self.vision_model.load_gen(
reserve_per_device=self.autosplit_reserve,
callback=progress_callback
):
if value:
yield value
if self.use_draft_model:
for value in self.draft_model.load_gen(
reserve_per_device=self.autosplit_reserve,
@ -527,6 +549,9 @@ class ExllamaV3Container(BaseModelContainer):
A list of integer token IDs.
"""
mm_embeddings: MultimodalEmbeddingWrapper = kwargs.get("embeddings")
mm_embeddings_content = mm_embeddings.content if mm_embeddings else []
return (
self.tokenizer.encode(
text,
@ -534,6 +559,7 @@ class ExllamaV3Container(BaseModelContainer):
kwargs.get("add_bos_token"), self.hf_model.add_bos_token()
),
encode_special_tokens=unwrap(kwargs.get("encode_special_tokens"), True),
embeddings=mm_embeddings_content
)
.flatten()
.tolist()
@ -802,6 +828,9 @@ class ExllamaV3Container(BaseModelContainer):
stop_conditions = params.stop
add_bos_token = unwrap(params.add_bos_token, self.hf_model.add_bos_token())
# Get multimodal embeddings if present
mm_embeddings_content = mm_embeddings.content if mm_embeddings else []
# Fetch EOS tokens from generation_config if they exist
eos_tokens = self.hf_model.eos_tokens() or [self.tokenizer.eos_token_id]
@ -812,6 +841,7 @@ class ExllamaV3Container(BaseModelContainer):
prompt,
add_bos=add_bos_token,
encode_special_tokens=True,
embeddings=mm_embeddings_content,
)
for prompt in prompts
]
@ -855,6 +885,7 @@ class ExllamaV3Container(BaseModelContainer):
max_new_tokens=max_tokens,
stop_conditions=stop_conditions,
banned_strings=params.banned_strings,
embeddings=mm_embeddings_content,
)
generated_tokens = 0

View file

@ -0,0 +1,27 @@
"""Vision utilities for ExLlamaV2."""
from async_lru import alru_cache
from common import model
from common.optional_dependencies import dependencies
from common.image_util import get_image
# Since this is used outside the Exl3 backend, the dependency
# may be optional
if dependencies.exllamav3:
from exllamav3.tokenizer import MMEmbedding
# Fetch the return type on runtime
@alru_cache(20)
async def get_image_embedding_exl3(url: str) -> "MMEmbedding":
image = await get_image(url)
return model.container.vision_model.get_image_embeddings(
tokenizer=model.container.tokenizer,
image=image,
text_alias=None,
)
def clear_image_embedding_cache():
get_image_embedding_exl3.cache_clear()

View file

@ -1,4 +1,5 @@
from backends.exllamav2.vision import get_image_embedding
from backends.exllamav2.vision import get_image_embedding_exl2
from backends.exllamav3.vision import get_image_embedding_exl3
from common import model
from loguru import logger
from pydantic import BaseModel, Field
@ -8,7 +9,8 @@ from common.optional_dependencies import dependencies
if dependencies.exllamav2:
from exllamav2 import ExLlamaV2VisionTower
if dependencies.exllamav3:
from exllamav3 import Model
class MultimodalEmbeddingWrapper(BaseModel):
"""Common multimodal embedding wrapper"""
@ -20,12 +22,25 @@ class MultimodalEmbeddingWrapper(BaseModel):
async def add(self, url: str):
# Determine the type of vision embedding to use
if not self.type:
if isinstance(model.container.vision_model, ExLlamaV2VisionTower):
if (
dependencies.exllamav2 and
isinstance(model.container.vision_model, ExLlamaV2VisionTower)
):
self.type = "ExLlamaV2MMEmbedding"
elif (
dependencies.exllamav3 and
isinstance(model.container.vision_model, Model)
):
self.type = "MMEmbedding"
# Create the embedding
if self.type == "ExLlamaV2MMEmbedding":
embedding = await get_image_embedding(url)
embedding = await get_image_embedding_exl2(url)
self.content.append(embedding)
self.text_alias.append(embedding.text_alias)
elif self.type == "MMEmbedding":
embedding = await get_image_embedding_exl3(url)
self.content.append(embedding)
self.text_alias.append(embedding.text_alias)
else:
logger.error("No valid vision model to create embedding")
logger.error("No valid vision model to create embedding")