Merge pull request #158 from AlpinDale/embeddings
feat: add embeddings support via Infinity-emb
This commit is contained in:
commit
1bf062559d
14 changed files with 443 additions and 11 deletions
66
backends/infinity/model.py
Normal file
66
backends/infinity/model.py
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
import gc
|
||||
import pathlib
|
||||
import torch
|
||||
from loguru import logger
|
||||
from typing import List, Optional
|
||||
|
||||
from common.utils import unwrap
|
||||
|
||||
# Conditionally import infinity to sidestep its logger
|
||||
# TODO: Make this prettier
|
||||
try:
|
||||
from infinity_emb import EngineArgs, AsyncEmbeddingEngine
|
||||
|
||||
has_infinity_emb = True
|
||||
except ImportError:
|
||||
has_infinity_emb = False
|
||||
|
||||
|
||||
class InfinityContainer:
|
||||
model_dir: pathlib.Path
|
||||
model_is_loading: bool = False
|
||||
model_loaded: bool = False
|
||||
|
||||
# Conditionally set the type hint based on importablity
|
||||
# TODO: Clean this up
|
||||
if has_infinity_emb:
|
||||
engine: Optional[AsyncEmbeddingEngine] = None
|
||||
else:
|
||||
engine = None
|
||||
|
||||
def __init__(self, model_directory: pathlib.Path):
|
||||
self.model_dir = model_directory
|
||||
|
||||
async def load(self, **kwargs):
|
||||
self.model_is_loading = True
|
||||
|
||||
# Use cpu by default
|
||||
device = unwrap(kwargs.get("embeddings_device"), "cpu")
|
||||
|
||||
engine_args = EngineArgs(
|
||||
model_name_or_path=str(self.model_dir),
|
||||
engine="torch",
|
||||
device=device,
|
||||
bettertransformer=False,
|
||||
model_warmup=False,
|
||||
)
|
||||
|
||||
self.engine = AsyncEmbeddingEngine.from_args(engine_args)
|
||||
await self.engine.astart()
|
||||
|
||||
self.model_loaded = True
|
||||
logger.info("Embedding model successfully loaded.")
|
||||
|
||||
async def unload(self):
|
||||
await self.engine.astop()
|
||||
self.engine = None
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
logger.info("Embedding model unloaded.")
|
||||
|
||||
async def generate(self, sentence_input: List[str]):
|
||||
result_embeddings, usage = await self.engine.embed(sentence_input)
|
||||
|
||||
return {"embeddings": result_embeddings, "usage": usage}
|
||||
|
|
@ -23,6 +23,7 @@ def init_argparser():
|
|||
)
|
||||
add_network_args(parser)
|
||||
add_model_args(parser)
|
||||
add_embeddings_args(parser)
|
||||
add_logging_args(parser)
|
||||
add_developer_args(parser)
|
||||
add_sampling_args(parser)
|
||||
|
|
@ -209,3 +210,22 @@ def add_sampling_args(parser: argparse.ArgumentParser):
|
|||
sampling_group.add_argument(
|
||||
"--override-preset", type=str, help="Select a sampler override preset"
|
||||
)
|
||||
|
||||
|
||||
def add_embeddings_args(parser: argparse.ArgumentParser):
|
||||
"""Adds arguments specific to embeddings"""
|
||||
|
||||
embeddings_group = parser.add_argument_group("embeddings")
|
||||
embeddings_group.add_argument(
|
||||
"--embedding-model-dir",
|
||||
type=str,
|
||||
help="Overrides the directory to look for models",
|
||||
)
|
||||
embeddings_group.add_argument(
|
||||
"--embedding-model-name", type=str, help="An initial model to load"
|
||||
)
|
||||
embeddings_group.add_argument(
|
||||
"--embeddings-device",
|
||||
type=str,
|
||||
help="Device to use for embeddings. Options: (cpu, auto, cuda)",
|
||||
)
|
||||
|
|
|
|||
|
|
@ -59,6 +59,11 @@ def from_args(args: dict):
|
|||
cur_developer_config = developer_config()
|
||||
GLOBAL_CONFIG["developer"] = {**cur_developer_config, **developer_override}
|
||||
|
||||
embeddings_override = args.get("embeddings")
|
||||
if embeddings_override:
|
||||
cur_embeddings_config = embeddings_config()
|
||||
GLOBAL_CONFIG["embeddings"] = {**cur_embeddings_config, **embeddings_override}
|
||||
|
||||
|
||||
def sampling_config():
|
||||
"""Returns the sampling parameter config from the global config"""
|
||||
|
|
@ -95,3 +100,8 @@ def logging_config():
|
|||
def developer_config():
|
||||
"""Returns the developer specific config from the global config"""
|
||||
return unwrap(GLOBAL_CONFIG.get("developer"), {})
|
||||
|
||||
|
||||
def embeddings_config():
|
||||
"""Returns the embeddings config from the global config"""
|
||||
return unwrap(GLOBAL_CONFIG.get("embeddings"), {})
|
||||
|
|
|
|||
|
|
@ -20,6 +20,15 @@ if not do_export_openapi:
|
|||
|
||||
# Global model container
|
||||
container: Optional[ExllamaV2Container] = None
|
||||
embeddings_container = None
|
||||
|
||||
# Type hint the infinity emb container if it exists
|
||||
from backends.infinity.model import has_infinity_emb
|
||||
|
||||
if has_infinity_emb:
|
||||
from backends.infinity.model import InfinityContainer
|
||||
|
||||
embeddings_container: Optional[InfinityContainer] = None
|
||||
|
||||
|
||||
def load_progress(module, modules):
|
||||
|
|
@ -48,8 +57,6 @@ async def load_model_gen(model_path: pathlib.Path, **kwargs):
|
|||
f'Model "{loaded_model_name}" is already loaded! Aborting.'
|
||||
)
|
||||
|
||||
# Unload the existing model
|
||||
if container and container.model:
|
||||
logger.info("Unloading existing model.")
|
||||
await unload_model()
|
||||
|
||||
|
|
@ -100,6 +107,41 @@ async def unload_loras():
|
|||
await container.unload(loras_only=True)
|
||||
|
||||
|
||||
async def load_embedding_model(model_path: pathlib.Path, **kwargs):
|
||||
global embeddings_container
|
||||
|
||||
# Break out if infinity isn't installed
|
||||
if not has_infinity_emb:
|
||||
raise ImportError(
|
||||
"Skipping embeddings because infinity-emb is not installed.\n"
|
||||
"Please run the following command in your environment "
|
||||
"to install extra packages:\n"
|
||||
"pip install -U .[extras]"
|
||||
)
|
||||
|
||||
# Check if the model is already loaded
|
||||
if embeddings_container and embeddings_container.engine:
|
||||
loaded_model_name = embeddings_container.model_dir.name
|
||||
|
||||
if loaded_model_name == model_path.name and embeddings_container.model_loaded:
|
||||
raise ValueError(
|
||||
f'Embeddings model "{loaded_model_name}" is already loaded! Aborting.'
|
||||
)
|
||||
|
||||
logger.info("Unloading existing embeddings model.")
|
||||
await unload_embedding_model()
|
||||
|
||||
embeddings_container = InfinityContainer(model_path)
|
||||
await embeddings_container.load(**kwargs)
|
||||
|
||||
|
||||
async def unload_embedding_model():
|
||||
global embeddings_container
|
||||
|
||||
await embeddings_container.unload()
|
||||
embeddings_container = None
|
||||
|
||||
|
||||
def get_config_default(key, fallback=None, is_draft=False):
|
||||
"""Fetches a default value from model config if allowed by the user."""
|
||||
|
||||
|
|
@ -126,3 +168,21 @@ async def check_model_container():
|
|||
).error.message
|
||||
|
||||
raise HTTPException(400, error_message)
|
||||
|
||||
|
||||
async def check_embeddings_container():
|
||||
"""
|
||||
FastAPI depends that checks if an embeddings model is loaded.
|
||||
|
||||
This is the same as the model container check, but with embeddings instead.
|
||||
"""
|
||||
|
||||
if embeddings_container is None or not (
|
||||
embeddings_container.model_is_loading or embeddings_container.model_loaded
|
||||
):
|
||||
error_message = handle_request_error(
|
||||
"No embedding models are currently loaded.",
|
||||
exc_info=False,
|
||||
).error.message
|
||||
|
||||
raise HTTPException(400, error_message)
|
||||
|
|
|
|||
|
|
@ -1,16 +1,32 @@
|
|||
import asyncio
|
||||
import signal
|
||||
import sys
|
||||
from loguru import logger
|
||||
from types import FrameType
|
||||
|
||||
from common import model
|
||||
|
||||
|
||||
def signal_handler(*_):
|
||||
"""Signal handler for main function. Run before uvicorn starts."""
|
||||
|
||||
logger.warning("Shutdown signal called. Exiting gracefully.")
|
||||
|
||||
# Run async unloads for model
|
||||
asyncio.ensure_future(signal_handler_async())
|
||||
|
||||
# Exit the program
|
||||
sys.exit(0)
|
||||
|
||||
|
||||
async def signal_handler_async(*_):
|
||||
if model.container:
|
||||
await model.container.unload()
|
||||
|
||||
if model.embeddings_container:
|
||||
await model.embeddings_container.unload()
|
||||
|
||||
|
||||
def uvicorn_signal_handler(signal_event: signal.Signals):
|
||||
"""Overrides uvicorn's signal handler."""
|
||||
|
||||
|
|
|
|||
|
|
@ -201,3 +201,19 @@ model:
|
|||
#loras:
|
||||
#- name: lora1
|
||||
# scaling: 1.0
|
||||
|
||||
# Options for embedding models and loading.
|
||||
# NOTE: Embeddings requires the "extras" feature to be installed
|
||||
# Install it via "pip install .[extras]"
|
||||
embeddings:
|
||||
# Overrides directory to look for embedding models (default: models)
|
||||
embedding_model_dir: models
|
||||
|
||||
# An initial embedding model to load on the infinity backend (default: None)
|
||||
embedding_model_name:
|
||||
|
||||
# Device to load embedding models on (default: cpu)
|
||||
# Possible values: cpu, auto, cuda
|
||||
# NOTE: It's recommended to load embedding models on the CPU.
|
||||
# If you'd like to load on an AMD gpu, set this value to "cuda" as well.
|
||||
embeddings_device: cpu
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ from sys import maxsize
|
|||
|
||||
from common import config, model
|
||||
from common.auth import check_api_key
|
||||
from common.model import check_model_container
|
||||
from common.model import check_embeddings_container, check_model_container
|
||||
from common.networking import handle_request_error, run_with_request_disconnect
|
||||
from common.utils import unwrap
|
||||
from endpoints.OAI.types.completion import CompletionRequest, CompletionResponse
|
||||
|
|
@ -13,6 +13,7 @@ from endpoints.OAI.types.chat_completion import (
|
|||
ChatCompletionRequest,
|
||||
ChatCompletionResponse,
|
||||
)
|
||||
from endpoints.OAI.types.embedding import EmbeddingsRequest, EmbeddingsResponse
|
||||
from endpoints.OAI.utils.chat_completion import (
|
||||
format_prompt_with_template,
|
||||
generate_chat_completion,
|
||||
|
|
@ -22,6 +23,7 @@ from endpoints.OAI.utils.completion import (
|
|||
generate_completion,
|
||||
stream_generate_completion,
|
||||
)
|
||||
from endpoints.OAI.utils.embeddings import get_embeddings
|
||||
|
||||
|
||||
api_name = "OAI"
|
||||
|
|
@ -134,3 +136,19 @@ async def chat_completion_request(
|
|||
disconnect_message=f"Chat completion {request.state.id} cancelled by user.",
|
||||
)
|
||||
return response
|
||||
|
||||
|
||||
# Embeddings endpoint
|
||||
@router.post(
|
||||
"/v1/embeddings",
|
||||
dependencies=[Depends(check_api_key), Depends(check_embeddings_container)],
|
||||
)
|
||||
async def embeddings(request: Request, data: EmbeddingsRequest) -> EmbeddingsResponse:
|
||||
embeddings_task = asyncio.create_task(get_embeddings(data, request))
|
||||
response = await run_with_request_disconnect(
|
||||
request,
|
||||
embeddings_task,
|
||||
f"Embeddings request {request.state.id} cancelled by user.",
|
||||
)
|
||||
|
||||
return response
|
||||
|
|
|
|||
42
endpoints/OAI/types/embedding.py
Normal file
42
endpoints/OAI/types/embedding.py
Normal file
|
|
@ -0,0 +1,42 @@
|
|||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class UsageInfo(BaseModel):
|
||||
prompt_tokens: int = 0
|
||||
total_tokens: int = 0
|
||||
completion_tokens: Optional[int] = 0
|
||||
|
||||
|
||||
class EmbeddingsRequest(BaseModel):
|
||||
input: List[str] = Field(
|
||||
..., description="List of input texts to generate embeddings for."
|
||||
)
|
||||
encoding_format: str = Field(
|
||||
"float",
|
||||
description="Encoding format for the embeddings. "
|
||||
"Can be 'float' or 'base64'.",
|
||||
)
|
||||
model: Optional[str] = Field(
|
||||
None,
|
||||
description="Name of the embedding model to use. "
|
||||
"If not provided, the default model will be used.",
|
||||
)
|
||||
|
||||
|
||||
class EmbeddingObject(BaseModel):
|
||||
object: str = Field("embedding", description="Type of the object.")
|
||||
embedding: List[float] = Field(
|
||||
..., description="Embedding values as a list of floats."
|
||||
)
|
||||
index: int = Field(
|
||||
..., description="Index of the input text corresponding to " "the embedding."
|
||||
)
|
||||
|
||||
|
||||
class EmbeddingsResponse(BaseModel):
|
||||
object: str = Field("list", description="Type of the response object.")
|
||||
data: List[EmbeddingObject] = Field(..., description="List of embedding objects.")
|
||||
model: str = Field(..., description="Name of the embedding model used.")
|
||||
usage: UsageInfo = Field(..., description="Information about token usage.")
|
||||
64
endpoints/OAI/utils/embeddings.py
Normal file
64
endpoints/OAI/utils/embeddings.py
Normal file
|
|
@ -0,0 +1,64 @@
|
|||
"""
|
||||
This file is derived from
|
||||
[text-generation-webui openai extension embeddings](https://github.com/oobabooga/text-generation-webui/blob/1a7c027386f43b84f3ca3b0ff04ca48d861c2d7a/extensions/openai/embeddings.py)
|
||||
and modified.
|
||||
The changes introduced are: Suppression of progress bar,
|
||||
typing/pydantic classes moved into this file,
|
||||
embeddings function declared async.
|
||||
"""
|
||||
|
||||
import base64
|
||||
from fastapi import Request
|
||||
import numpy as np
|
||||
from loguru import logger
|
||||
|
||||
from common import model
|
||||
from endpoints.OAI.types.embedding import (
|
||||
EmbeddingObject,
|
||||
EmbeddingsRequest,
|
||||
EmbeddingsResponse,
|
||||
UsageInfo,
|
||||
)
|
||||
|
||||
|
||||
def float_list_to_base64(float_array: np.ndarray) -> str:
|
||||
"""
|
||||
Converts the provided list to a float32 array for OpenAI
|
||||
Ex. float_array = np.array(float_list, dtype="float32")
|
||||
"""
|
||||
|
||||
# Encode raw bytes into base64
|
||||
encoded_bytes = base64.b64encode(float_array.tobytes())
|
||||
|
||||
# Turn raw base64 encoded bytes into ASCII
|
||||
ascii_string = encoded_bytes.decode("ascii")
|
||||
return ascii_string
|
||||
|
||||
|
||||
async def get_embeddings(data: EmbeddingsRequest, request: Request) -> dict:
|
||||
model_path = model.embeddings_container.model_dir
|
||||
|
||||
logger.info(f"Recieved embeddings request {request.state.id}")
|
||||
embedding_data = await model.embeddings_container.generate(data.input)
|
||||
|
||||
# OAI expects a return of base64 if the input is base64
|
||||
embedding_object = [
|
||||
EmbeddingObject(
|
||||
embedding=float_list_to_base64(emb)
|
||||
if data.encoding_format == "base64"
|
||||
else emb.tolist(),
|
||||
index=n,
|
||||
)
|
||||
for n, emb in enumerate(embedding_data.get("embeddings"))
|
||||
]
|
||||
|
||||
usage = embedding_data.get("usage")
|
||||
response = EmbeddingsResponse(
|
||||
data=embedding_object,
|
||||
model=model_path.name,
|
||||
usage=UsageInfo(prompt_tokens=usage, total_tokens=usage),
|
||||
)
|
||||
|
||||
logger.info(f"Finished embeddings request {request.state.id}")
|
||||
|
||||
return response
|
||||
|
|
@ -7,7 +7,7 @@ from sse_starlette import EventSourceResponse
|
|||
from common import config, model, sampling
|
||||
from common.auth import check_admin_key, check_api_key, get_key_permission
|
||||
from common.downloader import hf_repo_download
|
||||
from common.model import check_model_container
|
||||
from common.model import check_embeddings_container, check_model_container
|
||||
from common.networking import handle_request_error, run_with_request_disconnect
|
||||
from common.templating import PromptTemplate, get_all_templates
|
||||
from common.utils import unwrap
|
||||
|
|
@ -15,6 +15,7 @@ from endpoints.core.types.auth import AuthPermissionResponse
|
|||
from endpoints.core.types.download import DownloadRequest, DownloadResponse
|
||||
from endpoints.core.types.lora import LoraList, LoraLoadRequest, LoraLoadResponse
|
||||
from endpoints.core.types.model import (
|
||||
EmbeddingModelLoadRequest,
|
||||
ModelCard,
|
||||
ModelList,
|
||||
ModelLoadRequest,
|
||||
|
|
@ -253,6 +254,93 @@ async def unload_loras():
|
|||
await model.unload_loras()
|
||||
|
||||
|
||||
@router.get("/v1/model/embedding/list", dependencies=[Depends(check_api_key)])
|
||||
async def list_embedding_models(request: Request) -> ModelList:
|
||||
"""
|
||||
Lists all embedding models in the model directory.
|
||||
|
||||
Requires an admin key to see all embedding models.
|
||||
"""
|
||||
|
||||
if get_key_permission(request) == "admin":
|
||||
embedding_model_dir = unwrap(
|
||||
config.embeddings_config().get("embedding_model_dir"), "models"
|
||||
)
|
||||
embedding_model_path = pathlib.Path(embedding_model_dir)
|
||||
|
||||
models = get_model_list(embedding_model_path.resolve())
|
||||
else:
|
||||
models = await get_current_model_list(model_type="embedding")
|
||||
|
||||
return models
|
||||
|
||||
|
||||
@router.get(
|
||||
"/v1/model/embedding",
|
||||
dependencies=[Depends(check_api_key), Depends(check_embeddings_container)],
|
||||
)
|
||||
async def get_embedding_model() -> ModelList:
|
||||
"""Returns the currently loaded embedding model."""
|
||||
|
||||
return get_current_model_list(model_type="embedding")[0]
|
||||
|
||||
|
||||
@router.post("/v1/model/embedding/load", dependencies=[Depends(check_admin_key)])
|
||||
async def load_embedding_model(
|
||||
request: Request, data: EmbeddingModelLoadRequest
|
||||
) -> ModelLoadResponse:
|
||||
# Verify request parameters
|
||||
if not data.name:
|
||||
error_message = handle_request_error(
|
||||
"A model name was not provided for load.",
|
||||
exc_info=False,
|
||||
).error.message
|
||||
|
||||
raise HTTPException(400, error_message)
|
||||
|
||||
embedding_model_dir = pathlib.Path(
|
||||
unwrap(config.model_config().get("embedding_model_dir"), "models")
|
||||
)
|
||||
embedding_model_path = embedding_model_dir / data.name
|
||||
|
||||
if not embedding_model_path.exists():
|
||||
error_message = handle_request_error(
|
||||
"Could not find the embedding model path for load. "
|
||||
+ "Check model name or config.yml?",
|
||||
exc_info=False,
|
||||
).error.message
|
||||
|
||||
raise HTTPException(400, error_message)
|
||||
|
||||
try:
|
||||
load_task = asyncio.create_task(
|
||||
model.load_embedding_model(embedding_model_path, **data.model_dump())
|
||||
)
|
||||
await run_with_request_disconnect(
|
||||
request, load_task, "Embedding model load request cancelled by user."
|
||||
)
|
||||
except Exception as exc:
|
||||
error_message = handle_request_error(str(exc)).error.message
|
||||
|
||||
raise HTTPException(400, error_message) from exc
|
||||
|
||||
response = ModelLoadResponse(
|
||||
model_type="embedding_model", module=1, modules=1, status="finished"
|
||||
)
|
||||
|
||||
return response
|
||||
|
||||
|
||||
@router.post(
|
||||
"/v1/model/embedding/unload",
|
||||
dependencies=[Depends(check_admin_key), Depends(check_embeddings_container)],
|
||||
)
|
||||
async def unload_embedding_model():
|
||||
"""Unloads the current embedding model."""
|
||||
|
||||
await model.unload_embedding_model()
|
||||
|
||||
|
||||
# Encode tokens endpoint
|
||||
@router.post(
|
||||
"/v1/token/encode",
|
||||
|
|
|
|||
|
|
@ -137,6 +137,11 @@ class ModelLoadRequest(BaseModel):
|
|||
skip_queue: Optional[bool] = False
|
||||
|
||||
|
||||
class EmbeddingModelLoadRequest(BaseModel):
|
||||
name: str
|
||||
embeddings_device: Optional[str] = None
|
||||
|
||||
|
||||
class ModelLoadResponse(BaseModel):
|
||||
"""Represents a model load response."""
|
||||
|
||||
|
|
|
|||
|
|
@ -32,15 +32,26 @@ def get_model_list(model_path: pathlib.Path, draft_model_path: Optional[str] = N
|
|||
return model_card_list
|
||||
|
||||
|
||||
async def get_current_model_list(is_draft: bool = False):
|
||||
"""Gets the current model in list format and with path only."""
|
||||
async def get_current_model_list(model_type: str = "model"):
|
||||
"""
|
||||
Gets the current model in list format and with path only.
|
||||
|
||||
Unified for fetching both models and embedding models.
|
||||
"""
|
||||
|
||||
current_models = []
|
||||
model_path = None
|
||||
|
||||
# Make sure the model container exists
|
||||
if model.container:
|
||||
model_path = model.container.get_model_path(is_draft)
|
||||
if model_path:
|
||||
current_models.append(ModelCard(id=model_path.name))
|
||||
if model_type == "model" or model_type == "draft":
|
||||
if model.container:
|
||||
model_path = model.container.get_model_path(model_type == "draft")
|
||||
elif model_type == "embedding":
|
||||
if model.embeddings_container:
|
||||
model_path = model.embeddings_container.model_dir
|
||||
|
||||
if model_path:
|
||||
current_models.append(ModelCard(id=model_path.name))
|
||||
|
||||
return ModelList(data=current_models)
|
||||
|
||||
|
|
|
|||
15
main.py
15
main.py
|
|
@ -87,6 +87,21 @@ async def entrypoint_async():
|
|||
lora_dir = pathlib.Path(unwrap(lora_config.get("lora_dir"), "loras"))
|
||||
await model.container.load_loras(lora_dir.resolve(), **lora_config)
|
||||
|
||||
# If an initial embedding model name is specified, create a separate container
|
||||
# and load the model
|
||||
embedding_config = config.embeddings_config()
|
||||
embedding_model_name = embedding_config.get("embedding_model_name")
|
||||
if embedding_model_name:
|
||||
embedding_model_path = pathlib.Path(
|
||||
unwrap(embedding_config.get("embedding_model_dir"), "models")
|
||||
)
|
||||
embedding_model_path = embedding_model_path / embedding_model_name
|
||||
|
||||
try:
|
||||
await model.load_embedding_model(embedding_model_path, **embedding_config)
|
||||
except ImportError as ex:
|
||||
logger.error(ex.msg)
|
||||
|
||||
await start_api(host, port)
|
||||
|
||||
|
||||
|
|
|
|||
|
|
@ -47,7 +47,8 @@ dependencies = [
|
|||
[project.optional-dependencies]
|
||||
extras = [
|
||||
# Heavy dependencies that aren't for everyday use
|
||||
"outlines"
|
||||
"outlines",
|
||||
"sentence-transformers"
|
||||
]
|
||||
dev = [
|
||||
"ruff == 0.3.2"
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue