fix line lengths

This commit is contained in:
TerminalMan 2024-09-11 21:43:30 +01:00
parent c6f9806ec6
commit 05f1c3e293

View file

@ -1,248 +1,331 @@
from pydantic import BaseModel, ConfigDict, Field, model_validator
from typing import List, Optional, Union
from common.utils import unwrap
class config_config_model(BaseModel):
config: Optional[str] = Field(
None, description="Path to an overriding config.yml file"
)
class network_config_model(BaseModel):
host: Optional[str] = Field("127.0.0.1", description="The IP to host on")
port: Optional[int] = Field(5000, description="The port to host on")
disable_auth: Optional[bool] = Field(
False, description="Disable HTTP token authentication with requests"
)
send_tracebacks: Optional[bool] = Field(
False, description="Decide whether to send error tracebacks over the API"
)
api_servers: Optional[List[str]] = Field(
[
"OAI",
],
description="API servers to enable. Options: (OAI, Kobold)",
)
class logging_config_model(BaseModel):
log_prompt: Optional[bool] = Field(False, description="Enable prompt logging")
log_generation_params: Optional[bool] = Field(
False, description="Enable generation parameter logging"
)
log_requests: Optional[bool] = Field(False, description="Enable request logging")
class model_config_model(BaseModel):
model_dir: str = Field(
"models",
description="Overrides the directory to look for models (default: models). Windows users, do NOT put this path in quotes.",
)
use_dummy_models: Optional[bool] = Field(
False,
description="Sends dummy model names when the models endpoint is queried. Enable this if looking for specific OAI models.",
)
model_name: Optional[str] = Field(
None,
description="An initial model to load. Make sure the model is located in the model directory! REQUIRED: This must be filled out to load a model on startup.",
)
use_as_default: List[str] = Field(
default_factory=list,
description="Names of args to use as a default fallback for API load requests (default: []). Example: ['max_seq_len', 'cache_mode']",
)
max_seq_len: Optional[int] = Field(
None,
description="Max sequence length. Fetched from the model's base sequence length in config.json by default.",
)
override_base_seq_len: Optional[int] = Field(
None,
description="Overrides base model context length. WARNING: Only use this if the model's base sequence length is incorrect.",
)
tensor_parallel: Optional[bool] = Field(
False,
description="Load model with tensor parallelism. Fallback to autosplit if GPU split isn't provided.",
)
gpu_split_auto: Optional[bool] = Field(
True,
description="Automatically allocate resources to GPUs (default: True). Not parsed for single GPU users.",
)
autosplit_reserve: List[int] = Field(
[96],
description="Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0). Represented as an array of MB per GPU.",
)
gpu_split: List[float] = Field(
default_factory=list,
description="An integer array of GBs of VRAM to split between GPUs (default: []). Used with tensor parallelism.",
)
rope_scale: Optional[float] = Field(
1.0,
description="Rope scale (default: 1.0). Same as compress_pos_emb. Only use if the model was trained on long context with rope.",
)
rope_alpha: Optional[Union[float, str]] = Field(
1.0,
description="Rope alpha (default: 1.0). Same as alpha_value. Set to 'auto' to auto-calculate.",
)
cache_mode: Optional[str] = Field(
"FP16",
description="Enable different cache modes for VRAM savings (default: FP16). Possible values: FP16, Q8, Q6, Q4.",
)
cache_size: Optional[int] = Field(
None,
description="Size of the prompt cache to allocate (default: max_seq_len). Must be a multiple of 256.",
)
chunk_size: Optional[int] = Field(
2048,
description="Chunk size for prompt ingestion (default: 2048). A lower value reduces VRAM usage but decreases ingestion speed.",
)
max_batch_size: Optional[int] = Field(
None,
description="Set the maximum number of prompts to process at one time (default: None/Automatic). Automatically calculated if left blank.",
)
prompt_template: Optional[str] = Field(
None,
description="Set the prompt template for this model. If empty, attempts to look for the model's chat template.",
)
num_experts_per_token: Optional[int] = Field(
None,
description="Number of experts to use per token. Fetched from the model's config.json. For MoE models only.",
)
fasttensors: Optional[bool] = Field(
False,
description="Enables fasttensors to possibly increase model loading speeds (default: False).",
)
class draft_model_config_model(BaseModel):
draft_model_dir: Optional[str] = Field(
"models",
description="Overrides the directory to look for draft models (default: models)",
)
draft_model_name: Optional[str] = Field(
None,
description="An initial draft model to load. Ensure the model is in the model directory.",
)
draft_rope_scale: Optional[float] = Field(
1.0,
description="Rope scale for draft models (default: 1.0). Same as compress_pos_emb. Use if the draft model was trained on long context with rope.",
)
draft_rope_alpha: Optional[float] = Field(
None,
description="Rope alpha for draft models (default: None). Same as alpha_value. Leave blank to auto-calculate the alpha value.",
)
draft_cache_mode: Optional[str] = Field(
"FP16",
description="Cache mode for draft models to save VRAM (default: FP16). Possible values: FP16, Q8, Q6, Q4.",
)
class lora_instance_model(BaseModel):
name: str = Field(..., description="Name of the LoRA model")
scaling: float = Field(
1.0, description="Scaling factor for the LoRA model (default: 1.0)"
)
class lora_config_model(BaseModel):
lora_dir: Optional[str] = Field(
"loras", description="Directory to look for LoRAs (default: 'loras')"
)
loras: Optional[List[lora_instance_model]] = Field(
None,
description="List of LoRAs to load and associated scaling factors (default scaling: 1.0)",
)
class sampling_config_model(BaseModel):
override_preset: Optional[str] = Field(
None, description="Select a sampler override preset"
)
class developer_config_model(BaseModel):
unsafe_launch: Optional[bool] = Field(
False, description="Skip Exllamav2 version check"
)
disable_request_streaming: Optional[bool] = Field(
False, description="Disables API request streaming"
)
cuda_malloc_backend: Optional[bool] = Field(
False, description="Runs with the pytorch CUDA malloc backend"
)
uvloop: Optional[bool] = Field(
False, description="Run asyncio using Uvloop or Winloop"
)
realtime_process_priority: Optional[bool] = Field(
False,
description="Set process to use a higher priority For realtime process priority, run as administrator or sudo Otherwise, the priority will be set to high",
)
class embeddings_config_model(BaseModel):
embedding_model_dir: Optional[str] = Field(
"models",
description="Overrides directory to look for embedding models (default: models)",
)
embeddings_device: Optional[str] = Field(
"cpu",
description="Device to load embedding models on (default: cpu). Possible values: cpu, auto, cuda. If using an AMD GPU, set this value to 'cuda'.",
)
embedding_model_name: Optional[str] = Field(
None, description="The embeddings model to load"
)
class tabby_config_model(BaseModel):
config: config_config_model = Field(default_factory=config_config_model)
network: network_config_model = Field(default_factory=network_config_model)
logging: logging_config_model = Field(default_factory=logging_config_model)
model: model_config_model = Field(default_factory=model_config_model)
draft_model: draft_model_config_model = Field(
default_factory=draft_model_config_model
)
lora: lora_config_model = Field(default_factory=lora_config_model)
sampling: sampling_config_model = Field(default_factory=sampling_config_model)
developer: developer_config_model = Field(default_factory=developer_config_model)
embeddings: embeddings_config_model = Field(default_factory=embeddings_config_model)
@model_validator(mode="before")
def set_defaults(cls, values):
for field_name, field_value in values.items():
if field_value is None:
default_instance = cls.__annotations__[field_name]().dict()
values[field_name] = cls.__annotations__[field_name](**default_instance)
return values
model_config = ConfigDict(validate_assignment=True)
def generate_config_file(filename="config_sample.yml", indentation=2):
schema = tabby_config_model.model_json_schema()
def dump_def(id: str, indent=2):
yaml = ""
indent = " " * indentation * indent
id = id.split("/")[-1]
section = schema["$defs"][id]["properties"]
for property in section.keys(): # get type
comment = section[property]["description"]
yaml += f"{indent}# {comment}\n"
value = unwrap(section[property].get("default"), "")
yaml += f"{indent}{property}: {value}\n\n"
return yaml + "\n"
yaml = ""
for section in schema["properties"].keys():
yaml += f"{section}:\n"
yaml += dump_def(schema["properties"][section]["$ref"])
yaml += "\n"
with open(filename, "w") as f:
f.write(yaml)
# generate_config_file("test.yml")
from pydantic import BaseModel, ConfigDict, Field, model_validator
from typing import List, Optional, Union
from common.utils import unwrap
class config_config_model(BaseModel):
config: Optional[str] = Field(
None, description=("Path to an overriding config.yml file")
)
class network_config_model(BaseModel):
host: Optional[str] = Field("127.0.0.1", description=("The IP to host on"))
port: Optional[int] = Field(5000, description=("The port to host on"))
disable_auth: Optional[bool] = Field(
False, description=("Disable HTTP token authentication with requests")
)
send_tracebacks: Optional[bool] = Field(
False,
description=("Decide whether to send error tracebacks over the API"),
)
api_servers: Optional[List[str]] = Field(
[
"OAI",
],
description=("API servers to enable. Options: (OAI, Kobold)"),
)
class logging_config_model(BaseModel):
log_prompt: Optional[bool] = Field(False, description=("Enable prompt logging"))
log_generation_params: Optional[bool] = Field(
False, description=("Enable generation parameter logging")
)
log_requests: Optional[bool] = Field(False, description=("Enable request logging"))
class model_config_model(BaseModel):
model_dir: str = Field(
"models",
description=(
"Overrides the directory to look for models (default: models). Windows"
"users, do NOT put this path in quotes."
),
)
use_dummy_models: Optional[bool] = Field(
False,
description=(
"Sends dummy model names when the models endpoint is queried. Enable this"
"if looking for specific OAI models."
),
)
model_name: Optional[str] = Field(
None,
description=(
"An initial model to load. Make sure the model is located in the model"
"directory! REQUIRED: This must be filled out to load a model on startup."
),
)
use_as_default: List[str] = Field(
default_factory=list,
description=(
"Names of args to use as a default fallback for API load requests"
"(default: []). Example: ['max_seq_len', 'cache_mode']"
),
)
max_seq_len: Optional[int] = Field(
None,
description=(
"Max sequence length. Fetched from the model's base sequence length in"
"config.json by default."
),
)
override_base_seq_len: Optional[int] = Field(
None,
description=(
"Overrides base model context length. WARNING: Only use this if the"
"model's base sequence length is incorrect."
),
)
tensor_parallel: Optional[bool] = Field(
False,
description=(
"Load model with tensor parallelism. Fallback to autosplit if GPU split"
"isn't provided."
),
)
gpu_split_auto: Optional[bool] = Field(
True,
description=(
"Automatically allocate resources to GPUs (default: True). Not parsed for"
"single GPU users."
),
)
autosplit_reserve: List[int] = Field(
[96],
description=(
"Reserve VRAM used for autosplit loading (default: 96 MB on GPU 0)."
"Represented as an array of MB per GPU."
),
)
gpu_split: List[float] = Field(
default_factory=list,
description=(
"An integer array of GBs of VRAM to split between GPUs (default: [])."
"Used with tensor parallelism."
),
)
rope_scale: Optional[float] = Field(
1.0,
description=(
"Rope scale (default: 1.0). Same as compress_pos_emb. Only use if the"
"model was trained on long context with rope."
),
)
rope_alpha: Optional[Union[float, str]] = Field(
1.0,
description=(
"Rope alpha (default: 1.0). Same as alpha_value. Set to 'auto' to auto-"
"calculate."
),
)
cache_mode: Optional[str] = Field(
"FP16",
description=(
"Enable different cache modes for VRAM savings (default: FP16). Possible"
"values: FP16, Q8, Q6, Q4."
),
)
cache_size: Optional[int] = Field(
None,
description=(
"Size of the prompt cache to allocate (default: max_seq_len). Must be a"
"multiple of 256."
),
)
chunk_size: Optional[int] = Field(
2048,
description=(
"Chunk size for prompt ingestion (default: 2048). A lower value reduces"
"VRAM usage but decreases ingestion speed."
),
)
max_batch_size: Optional[int] = Field(
None,
description=(
"Set the maximum number of prompts to process at one time (default:"
"None/Automatic). Automatically calculated if left blank."
),
)
prompt_template: Optional[str] = Field(
None,
description=(
"Set the prompt template for this model. If empty, attempts to look for"
"the model's chat template."
),
)
num_experts_per_token: Optional[int] = Field(
None,
description=(
"Number of experts to use per token. Fetched from the model's"
"config.json. For MoE models only."
),
)
fasttensors: Optional[bool] = Field(
False,
description=(
"Enables fasttensors to possibly increase model loading speeds (default:"
"False)."
),
)
class draft_model_config_model(BaseModel):
draft_model_dir: Optional[str] = Field(
"models",
description=(
"Overrides the directory to look for draft models (default: models)"
),
)
draft_model_name: Optional[str] = Field(
None,
description=(
"An initial draft model to load. Ensure the model is in the model"
"directory."
),
)
draft_rope_scale: Optional[float] = Field(
1.0,
description=(
"Rope scale for draft models (default: 1.0). Same as compress_pos_emb."
"Use if the draft model was trained on long context with rope."
),
)
draft_rope_alpha: Optional[float] = Field(
None,
description=(
"Rope alpha for draft models (default: None). Same as alpha_value. Leave"
"blank to auto-calculate the alpha value."
),
)
draft_cache_mode: Optional[str] = Field(
"FP16",
description=(
"Cache mode for draft models to save VRAM (default: FP16). Possible"
"values: FP16, Q8, Q6, Q4."
),
)
class lora_instance_model(BaseModel):
name: str = Field(..., description=("Name of the LoRA model"))
scaling: float = Field(
1.0, description=("Scaling factor for the LoRA model (default: 1.0)")
)
class lora_config_model(BaseModel):
lora_dir: Optional[str] = Field(
"loras", description=("Directory to look for LoRAs (default: 'loras')")
)
loras: Optional[List[lora_instance_model]] = Field(
None,
description=(
"List of LoRAs to load and associated scaling factors (default scaling:"
"1.0)"
),
)
class sampling_config_model(BaseModel):
override_preset: Optional[str] = Field(
None, description=("Select a sampler override preset")
)
class developer_config_model(BaseModel):
unsafe_launch: Optional[bool] = Field(
False, description=("Skip Exllamav2 version check")
)
disable_request_streaming: Optional[bool] = Field(
False, description=("Disables API request streaming")
)
cuda_malloc_backend: Optional[bool] = Field(
False, description=("Runs with the pytorch CUDA malloc backend")
)
uvloop: Optional[bool] = Field(
False, description=("Run asyncio using Uvloop or Winloop")
)
realtime_process_priority: Optional[bool] = Field(
False,
description=(
"Set process to use a higher priority For realtime process priority, run"
"as administrator or sudo Otherwise, the priority will be set to high"
),
)
class embeddings_config_model(BaseModel):
embedding_model_dir: Optional[str] = Field(
"models",
description=(
"Overrides directory to look for embedding models (default: models)"
),
)
embeddings_device: Optional[str] = Field(
"cpu",
description=(
"Device to load embedding models on (default: cpu). Possible values: cpu,"
"auto, cuda. If using an AMD GPU, set this value to 'cuda'."
),
)
embedding_model_name: Optional[str] = Field(
None, description=("The embeddings model to load")
)
class tabby_config_model(BaseModel):
config: config_config_model = Field(default_factory=config_config_model)
network: network_config_model = Field(default_factory=network_config_model)
logging: logging_config_model = Field(default_factory=logging_config_model)
model: model_config_model = Field(default_factory=model_config_model)
draft_model: draft_model_config_model = Field(
default_factory=draft_model_config_model
)
lora: lora_config_model = Field(default_factory=lora_config_model)
sampling: sampling_config_model = Field(default_factory=sampling_config_model)
developer: developer_config_model = Field(default_factory=developer_config_model)
embeddings: embeddings_config_model = Field(default_factory=embeddings_config_model)
@model_validator(mode="before")
def set_defaults(cls, values):
for field_name, field_value in values.items():
if field_value is None:
default_instance = cls.__annotations__[field_name]().dict()
values[field_name] = cls.__annotations__[field_name](**default_instance)
return values
model_config = ConfigDict(validate_assignment=True)
def generate_config_file(filename="config_sample.yml", indentation=2):
schema = tabby_config_model.model_json_schema()
def dump_def(id: str, indent=2):
yaml = ""
indent = " " * indentation * indent
id = id.split("/")[-1]
section = schema["$defs"][id]["properties"]
for property in section.keys(): # get type
comment = section[property]["description"]
yaml += f"{indent}# {comment}\n"
value = unwrap(section[property].get("default"), "")
yaml += f"{indent}{property}: {value}\n\n"
return yaml + "\n"
yaml = ""
for section in schema["properties"].keys():
yaml += f"{section}:\n"
yaml += dump_def(schema["properties"][section]["$ref"])
yaml += "\n"
with open(filename, "w") as f:
f.write(yaml)
# generate_config_file("test.yml")