/*-----------------------------------------*\ | RGBFusion2SMBusController.cpp | | | | Driver for Gigabyte Aorus RGB Fusion 2 | | SMBus lighting controller | | | | Adam Honse (CalcProgrammer1) 3/12/2020 | | Matt Harper 5/5/2020 | \*-----------------------------------------*/ #include "RGBFusion2SMBusController.h" #include #include #include #ifdef DEBUG #include #include #endif RGBFusion2SMBusController::RGBFusion2SMBusController(i2c_smbus_interface* bus, rgb_fusion_dev_id dev) { this->bus = bus; this->dev = dev; memset(led_data, 0, 10*16); led_count = 10; // Protocol supports 10 'slots' } unsigned int RGBFusion2SMBusController::GetLEDCount() { return(led_count); } std::string RGBFusion2SMBusController::GetDeviceLocation() { std::string return_string(bus->device_name); char addr[5]; snprintf(addr, 5, "0x%02X", dev); return_string.append(", address "); return_string.append(addr); return(return_string); } void RGBFusion2SMBusController::SetLEDEffect ( unsigned int led, int mode, unsigned int speed, unsigned char red, unsigned char green, unsigned char blue ) { led_data[led][RGB_FUSION_2_IDX_MODE] = mode; led_data[led][RGB_FUSION_2_IDX_RED] = red; led_data[led][RGB_FUSION_2_IDX_GREEN] = green; led_data[led][RGB_FUSION_2_IDX_BLUE] = blue; led_data[led][RGB_FUSION_2_IDX_BRIGHTNESS] = 0x64; // TODO - is this *really* the max value? // TODO - These timing calculations are weird - need to improve led_data[led][RGB_FUSION_2_TIMER_1_LSB] = 0x20 * speed; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0x03 * speed; led_data[led][RGB_FUSION_2_TIMER_2_LSB] = 0x20 * speed; led_data[led][RGB_FUSION_2_TIMER_2_MSB] = 0x03 * speed; // Here be dragons // Purpose of each index is not well understood // Existing values taken from Windows dump // TODO - more thorough understanding could lead to better implementation if (mode == RGB_FUSION_2_MODE_FLASHING) { led_data[led][0xc] = 0xd0; // ??? led_data[led][0xd] = 0x07; // ??? led_data[led][0xe] = 0x01 * speed; // Controls number of flashes // Following four fields appear to both important, and magic // No other values appear to work, but it's probably worth further investigation led_data[led][RGB_FUSION_2_TIMER_1_LSB] = 0x64; led_data[led][RGB_FUSION_2_TIMER_1_MSB] = 0; led_data[led][RGB_FUSION_2_TIMER_2_LSB] = 0xc8; // 0x64 * 2 = 0xc8 - Potentially significant? led_data[led][RGB_FUSION_2_TIMER_2_MSB] = 0; } if (mode == RGB_FUSION_2_MODE_COLOR_CYCLE) { led_data[led][0xc] = 0xd0; // ??? led_data[led][0xd] = 0x07; // ??? led_data[led][0xe] = 0x07; // ??? } // End dragons. Well, probably. #ifdef DEBUG // Print out hex for debug purposes for (int i = 0; i < 16; i++) { std::cout << std::setw(2) << std::setfill('0') << std::hex << (int)led_data[led][i] << " "; } std::cout << std::endl; #endif /* * Writes occur in 32 byte blocks * Therefore, writing the second 16 bytes necessitates writing the *first* 16 bytes as well. * Given that reading the existing state from the device is not yet possible, * unfortunately this implies that we may overwrite existing device states if the state * transition did not occur within in the same OpenRGB instance. That is to say, this current * behavior is non-ideal but the best we have. */ unsigned char oca = 0x20; // On chip address unsigned short chip_offset; if (led % 2) { chip_offset = led-1; } else { chip_offset = led; } unsigned char write_addr = oca + chip_offset; #ifdef DEBUG std::cout << "LED: " << led << "\tWrite address: " << std::hex << (int)write_addr << std::endl; #endif bus->i2c_smbus_write_block_data(0x68, write_addr, 32, led_data[led]); // Write 32 byte blocks at a time. Matches RGBF2 dump from Windows app. // Protocol expects terminating sequence 0x01ff written to register 0x17 unsigned short terminator = 0x01ff; unsigned char termination_addr = 0x17; bus->i2c_smbus_write_word_data(0x68, termination_addr, terminator); }